Portfolio of an Engineer of all trades
Unfortunately, I am unable to share any of the data I worked with. I can share the results and code used for data analytics.
Project Purpose:
Components:
Base Assembly:
Prototyping/Design:
Results:
All 5 buoys were built out, with the testing being completed for the solar cap and antenna design. A table with more statistical data can be seen below. Additionally, at the bottom of this page all code will be pasted from data analysis ran on the code, with sensitivities removed.
Jupyter Notebook > Script
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import dataframe_image as dfi
reference = pd.DataFrame()
reference["Sonbuoy #"] = ["006", "007", "009", "010"]
reference["Solar Panel"] = ["Small w/ Cap", "Voltaic 6V", "Wings","Larger w/ Cap"]
reference["Ground Plate"]= ["Large Square", "Small Square", "Rob DIY", "Large Circle"]
df = pd.read_csv()
df["FSP 006"].fillna(method="ffill", inplace=True)
df["FSP 007"].fillna(method="ffill", inplace=True)
df["FSP 009"].fillna(method="ffill", inplace=True)
df["FSP 010"].fillna(method="ffill", inplace=True)
df = df.drop(labels=[0, 1, 2], axis=0)
quarter = int((len(df["FSP 006"]))/4)
df1 = df[0:quarter]
df2 = df[quarter:2*quarter]
df3 = df[quarter*2:quarter*3]
df4 = df[quarter*3:-1]
type(df["FSP 006"][3])
plt.plot(df1["FSP 006"])
plt.plot(df1["FSP 007"])
plt.plot(df1["FSP 009"])
plt.plot(df1["FSP 010"])
plt.plot(df2["FSP 006"], label="FSP 006")
plt.plot(df2["FSP 007"], label="FSP 007")
plt.plot(df2["FSP 009"], label="FSP 009")
plt.plot(df2["FSP 010"], label="FSP 010")
plt.title("FSP 006, FSP 007, FSP 009, FSP 010 Battery % Over Time")
plt.xlabel("# Of Data Points Collected Through Time")
plt.ylabel("Battery %")
plt.legend(loc="best")
plt.savefig('006 vs 007 vs 009 vs 010 Battery.png')
mins = [ df2["FSP 006"].min(), df2["FSP 007"].min(), df2["FSP 009"].min(), df2["FSP 010"].min() ]
maxminlist = []
for i in range(len(mins)):
randovar = 100 - mins[i]
maxminlist.append(randovar)
reference["Solar Panel % Drop"] = maxminlist
reference
m07 = pd.read_csv()
m06 = pd.read_csv()
m09 = pd.read_csv()
m10 = pd.read_csv()
buck06 = len(m06['location'])
buck07 = len(m07['location'])
buck09 = len(m09['location'])
buck10 = len(m10['location'])
tot = buck06+buck07+buck09+buck10
print(buck07/tot, tot)
sizes = [buck06, buck07, buck09, buck10]
labels = ['Myriota 006'+' '+str(round(buck06/tot*100, 1))+'%', 'Myriota 007'+' '+str(round(buck07/tot*100,1))+'%', 'Myriota 009'+' '+str(round(buck09/tot*100, 1))+'%', 'Myriota 010'+' '+str(round(buck10/tot*100, 1))+'%']
plt.pie(sizes, labels=labels)
plt.title("Myriota Bucket Size Percentages")
plt.savefig('Bucket Size percentages.png')
hours = 48+17 #10 am Fri to 4am Monday for buckets
reference["Myriota Messages Per Hour"] = [round(buck06/hours, 2), round(buck07/hours, 2), round(buck09/hours, 2), round(buck10/hours,2)]
reference
x = np.arange(0, 66, 1)
y06= []
y07 = []
y09= []
y10 = []
for i in range(len(x)):
y06.append(reference["Myriota Messages Per Hour"][0]*x[i])
for i in range(len(x)):
y07.append(reference["Myriota Messages Per Hour"][1]*x[i])
for i in range(len(x)):
y09.append(reference["Myriota Messages Per Hour"][2]*x[i])
for i in range(len(x)):
y10.append(reference["Myriota Messages Per Hour"][3]*x[i])
plt.plot(x, y06, label="Myriota 010")
plt.plot(x, y07, label = "Myriota 007")
plt.plot(x, y09, label = "Myriota 009")
plt.plot(x, y10, label= "Myriota 010")
plt.legend(loc="best")
dfi.export(reference, 'ref.png')
helical = pd.read_csv()
whip = pd.read_csv()
buckheli = len(helical['location'])
buckwhip = len(whip['location'])
tot_ant = buckheli+buckwhip
sizes_ant = [buckheli, buckwhip]
labels_ant = ['Myriota 010 Helical'+' '+str(round(buckheli/tot_ant*100, 1))+'%', 'Myriota 009 Whip'+' '+str(round(buckwhip/tot_ant*100,1))+'%']
plt.pie(sizes_ant, labels=labels_ant)
plt.title("Myriota Bucket Size Percentages of Whip vs Helical Antennas")
plt.savefig('Bucket Size percentages Antennas.png')